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The Bells’ Capture note TH-3054-CERN

Ed Hartouni

January 29, 2014

This document revisits the paper by M. Bell and J. S. Bell “Capture of
Cooling Electrons by Cool Protons” TH-3054-CERN (March 30, 1981). I
expand the treatment to include e

+
e

� capture.

First Approximation

The capture cross section of a non-relativistic electron (velocity v

e

) on a sta-
tionary nucleus, from Spitzer [Physics of Fully Ionized Gases second revised
edition, Eq. (5-62)]:

�(v
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where:
A = 243�3/2

he

2
/(m2

e

c

3) = 2.11⇥ 10�22 cm2 [Spitzer, Eq. (5-63)]:
h = Planck’s constant
e = electron charge
m

e

= electron mass
c = velocity of light
h⌫0 = Z

2
↵

2
m

e

c

2
/2

= ground state binding energy
= 13.6 eV for hydrogen

h⌫

n

= radiated photon energy in capture to level n
= h⌫0/n

2 + E

E = electron kinetic energy
= m

e

v

2
e

/2
↵ = fine structure constant

= 1/137
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and g

n

“is a correction factor, generally about equal to one.” For the purpose
of this approximation:

g

n

= 1 (2)

Re-writing Eq. 1:
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Recognizing [e.g. from Abramowitz and Stegun (6.3.17)] that:
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for �1 < y < 1, leads to the expression:
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where  is the digamma function:

 (z) =
1

�(z)

d�(z)

dz

and �1 is Euler’s constant:

�1 = � = 0.5772156649 . . . (5)

The asymptotic expression for  (y) is [e.g. from Abramowitz and Stegun
(6.3.19)] as:

< (1 + iy) = ln y +
1

12y2
+

1

120y4
+
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252y6
+ · · ·

Using this form of  re-write Eq. 4 as:
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ignoring terms of order E/h⌫0 on the right of Eq. 6. This is accurate where:

E

h⌫0
<< 1 (7)
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For example with E/h⌫0 = 0.2, the term 1/12y2 = 1/300 compared to ln y =
0.8.

The rate-of-capture per proton is:

↵
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e

(8)

where:
n

e

= number of electrons per unit volume
↵

r

= hv
e

�(v
e

)i
where the angular brackets denote averaging over the electron velocity dis-
tribution.

Taking the electron velocity to be equal to a characteristic “thermal”
velocity, v

e

= v

T

re-write Eq. 6:
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for v
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small the ln term dominates and:
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where r

e

= e

2
/(m

e

c

2) is the classical radius of the electron.

Second Approximation

Taking the electron velocity distribution as a Maxwellian:

f(�!v
e

) =

 
2⇡kT

m

e

!�3/2

e

�E/kT (11)

or the “flattened” Maxwellian:
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suppressing the x degree-of-freedom (for example). Then:
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where n = 3 for the Maxwellian, and n = 2 for the “flattened” Maxwellian.
Taking a change of variables:

z =
E

kT

(14)

and substituting this into Eq. 13 and Eq. 6:
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There is the need to perform the integration:
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where the right hand side is written in terms of the  function. Recall the
definition of the � function [e.g. from Abramowitz and Stegun (6.1.1)]:
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now doing the integral in the straight forward manner (assuming that the
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recognizing that the derivatives on the left hand side vanish (no dependence
on z) This allows us to write:
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Now substituting the values for the “Maxwell” and the “flattened” thermal
distributions (n = 3, 2 respectively), and using the values:
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This result is compared with Spitzer’s Eq. (5-67):
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Spitzer’s definition of �(�) is his Eq. (5-69):
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associating this with above approximation taking �1 = �:
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which can be compared with Spitzer’s Table 5-6.
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� 0.01 0.02 0.05 0.1 0.2 0.5
�(�) Eq. 5-69 0.053 0.09 0.18 0.28 0.43 0.70
�(�) Eq. 22 -0.603 -0.34 0.01 0.23 0.44 0.69

� 1 2 5 10 100 1000
�(�) Eq. 5-69 0.96 1.26 1.69 2.02 3.2 4.3
�(�) Eq. 22 0.85 0.98 1.13 1.22 1.4 1.6

Table 1: Comparison of �(�) from Eq. 5-69 and Eq. 22 from Spitzer’s Table
5-6.

Third Approximation

The Bells go on to compare the cross section Eq. 6 with those computed in
Bates, et al., “Dissociation, recombination and attachment processes in the
upper atmosphere; II. The rate of recombination,” Proc. R. Soc. Lond. A

170, 322 (1939), in particular using Table I from that work. These results
are contained in Eq. (15) of that work:
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with ✏ the electron energy and ↵ here being the fine-structure constant. The
“total” recombination cross section is then:
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in practice the upper limit of the sum is set to the desired level of precision.
This result is attributed to J. R. Oppenheimer “Über die Strahlung der freien
Elektronen im Coulombfeld”, Zeitschrift für Physik 55 725 (1929).

The function F (a, b; c; z) is the hypergeometric function. We make use of
the property [see e.g. from Abramowitz and Stegun (15.4.1)]:

F (�m, b; c; z) =
mX

n=0

(�m)
n

(b)
n

(c)
n

z

n

n!

which is allows the function to be calculated as a finite series in the expres-
sions for qn

u

and q

n

z

above. This condition prevails above (where b = �m and
m = 0, 1, 2, . . .). A modern recalculation of the Bates, et al. result achieves

h⌫0/E 49.0 100 196 400
E (Z=1, eV) 0.278 0.136 0.69 0.34
� Bates, et al. 23.0 53.7 119 272

25.1 59.6 133 308
� Eq. 6 26.1 60.9 133 302
� Eq. 23 23.1 53.9 119 271

Table 2: Comparison of cross sections for various calculations. The line under
the Bates et al. is a recalculation of their results.

a somewhat di↵erent set of values than presented in that paper. This dif-
ference seems to be due to the di↵erence in the principle quantum number,
n, dependence. These values agree with Eq. 6. Better agreement with the
original Bates, et al. result uses the prescription due to M. J. Seaton “The
Solution of Capture-Cascade Equations for Hydrogen”, Monthly Notes of the

Royal Astronomical Society, 119, 81 (1959):
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4ln
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5 (23)

where
�1 = 0.1402 �2 = 0.525

The three expressions for the recombination cross sections, along with the
original Bates et al. calculations are shown in Fig. 1. Integrating Eq. 23 over
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Figure 1: The comparison of recombination cross sections as a function of
electron kinetic energy for Eqs. 6 (blue) and 23 (green) and the Bates, et al.
values (black symbols) and recalculation (red).

8



the electron temperature distributions we arrive at the equivalent of Eq. 16:
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and the subsequent expressions:
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with kT in eV and Z=1:
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Note that Eqs. 17 and 18 can also be written as:
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The Spitzer form, Eq. 19 can be written:
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Eqs. 27 and 28 are further simplified to:
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(flat.) = 7.86(kT )�0.648 10�13 cm3/s (30)

agreeing within 10% with the more complex equations in the range: 0.01 <

kT < 3.0 eV, and to within 1% for 0.07 < kT < 0.7 eV. The other expressions
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have a more limited range of precision:

↵

r

(Max. Eq.17) = 3.45(kT )�0.710 10�13 cm3/s (31)

↵

r

(flat. Eq. 18) = 7.48(kT )�0.662 10�13 cm3/s (32)

↵

r

(Spitz.) = 4.28(kT )�0.677 10�13 cm3/s (33)

agreeing within 10% with the more complex equations in the range: 0.02 <

kT < 1.8 eV, and to within 1% for 0.10 < kT < 0.66 eV. These various forms

Figure 2: The comparison of recombination rates as a function of electron
temperature for Eqs. 17 (red dashed) and 27 (red solid) and the Spitzer
values (green dashed) which are averaged over the Maxwell distribution. The
values from Eqs. 18 (blue dashed) and 28 are averaged over the “flattened”
distributions. The dotted lines are the approximations Eqs. 29 and 30 to be
compared with the solid lines.

are compared in Fig. 2. The e↵ect of a “flattened” thermal distribution
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increases the recombination rates by roughly a factor of 2. The di↵erent
recombination cross sections do not have a large e↵ect on the recombination
rate below kT = 1 eV.

Number of reactions in the lab frame

The rate of recombinations in the electron-Hydrogen “plasma” is given by:

N

0
r

= ↵

r

n

0
e

d (34)

where n

0
e

is the density of electrons in the plasma reference frame, and d is
the fraction of the ion orbit that overlaps with the electrons. In the plasma
frame, the electron number density is related to the lab-frame quantity by:
n

0
e

= n

e

/� where � is the boost into the lab frame. The times are also dilated
boosting to the lab frame, to longer times. This results in the expression:

N
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= ↵
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d
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where the electron temperature has its plasma frame value. Note that d is
frame invariant.

� =
1

q
1� (v

e

/c)2
(36)

where v
e

is the mean electron velocity in the lab frame (usually equal to the
ion velocity).

Protonium and positronium

The Appendix considers the case:

p+ p̄ ! (pp̄) + � (37)

where (pp̄) is the bound state of a proton and an anti-proton (“protonium”).
In this treatment I’ll include:

e

+ + e

� !
⇣
e

+
e

�
⌘

Ps
+ � (38)

where (e+e�)Ps is the bound state of the electron and positron, positronium.
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The changes to the above formula take the electron mass m
e

and replace
it with the appropriate reduced mass:

m
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= m
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The rate equations 17, 18, 19, 25, and 26 become for pp̄:
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and for e+e�:
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The temperature is taken in the plasma-reference frame. The reactions rates
will be roughly four orders of magnitude lower for (pp̄) production and a
factor of two higher for (e+e�)Ps production relative to the (pe�) production.
These rates are shown as a function of temperature in Figs. 3 and 4.
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Figure 3: The comparison of recombination rates for pp̄ as a function of
proton temperature as in Fig. 2 (no dotted lines are shown).
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Figure 4: The comparison of recombination rates for (e+e�)Ps as a function
of electron temperature as in Fig. 2 (no dotted lines are shown).
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